What is the Matlab algorithm for observable canonical form for single input system?
For observable canonical form for single input system we have following algorithm for 4th order system :
- A=[1 2 3 4;0 1 0 3;1 0 0 2;1 -2 1 -1]
A =
1 2 3
4
0 1 0
3
1 0 0
2
1 -2 1
-1
- C=[1 -1 2 -2]
C =
1 -1 2
-2
- O=obsv(A,C)
O =
1 -1 2
-2
1 5 1
7
9 -7 10
14
33 -17 41
21
- J=inv(O)
J =
-2.7632 -0.4211 -0.6336
0.2996
-0.1842 0.1053 -0.1397
0.0405
2.0263 0.3421 0.3826
-0.1761
0.2368 0.0789 0.1356
-0.0466
Now Extracting 4th column:
- Jn=(:,4)
Jn=(:,4)
Jn=J(:,4)
Jn =
0.2996
0.0405
-0.1761
-0.0466
Now using formula for PI:
- PI=[Jn A*Jn A*A*Jn A*A*A*Jn]
PI =
0.2996 -0.3340 0.4433
0.2389
0.0405
-0.0992 0.1680 0.1134
-0.1761 0.2065 -0.1559
0.4069
-0.0466 0.0891 -0.0182
-0.0304
- P=inv(PI)
P =
7.0000 -17.0000 1.0000
5.0000
4.0000 -8.0000 1.0000
15.0000
0.0000 6.0000 -1.0000
9.0000
1.0000 -1.0000 2.0000
-2.0000
- AH=P*A*PI
AH =
0.0000 -0.0000 0.0000
13.0000
1.0000 -0.0000 0.0000
13.0000
0.0000 1.0000
0.0000 4.0000
0.0000 -0.0000 1.0000
1.0000
- CH=C*PI
CH =
-0.0000 -0.0000 0.0000
1.0000
Comments
Post a Comment